
20 CROSSTALK The Journal of Defense Software Engineering December 1998

It is generally accepted that re-
quirements are the foundation
upon which the entire system is

built. Also accepted is that require-
ments verification and validation is
needed to assure that the functionality
specified in the requirements has been
delivered. However, all too often, re-
quirements are not satisfied, which
means you fix what you can and accept
that certain functionality will not be
there. A better approach is to get the
requirements right the first time. Com-
plete, concise, and clear requirements
will give the implementer a precise
blueprint with which to build the sys-
tem. Getting the requirements right is
not done by magic but through the
application of tools and metric analysis
techniques in requirements specifica-
tion, requirements verification, and
requirements management.

Because both parties must under-
stand the requirements that the acquirer
expects the provider to contractually
satisfy, specifications are usually written
in natural language. The use of natural
language to prescribe complex, dynamic
systems has at least two severe prob-
lems: ambiguity and inaccuracy. Many
words and phrases have dual meanings
that can be altered by the context in
which they are used. To define a large,
multidimensional capability within the
limitations imposed by the linear, two-
dimensional structure of a document
can obscure the relationships between
individual groups of requirements. The
first part of this article looks at types of
requirements-specification terminology,

some of which can contribute to ambi-
guity and misinterpretation.

Requirements-based testing is criti-
cal to the implementation of software
systems. Automated tools, if properly
used, open the door to assess the scope
and potential effectiveness of the test
program. A wealth of information can
be obtained through proper implemen-
tation of a database that tracks require-
ments at each level of decomposition
and the tests associated with the verifi-
cation of these requirements. From this
database, the project can gain impor-
tant insight into the relationship be-
tween the test and requirements. The
second part of this article outlines some
of the important insights into NASA
project test programs developed from
analyses of this type.

Requirements management is a
volatile, dynamic process. The skill with
which project workers maintain, keep
current, track, and trace the project’s set
of requirements affects every phase of
the project’s software development
lifecycle—including maintenance.
Months or years before project comple-
tion, effectively managed requirements
determine how, when, and how expen-
sively completion will take place.

Before processing requirements, the
schema for the requirements manage-
ment database must be developed. The
final portion of this article describes
some critical issues identified by the
SATC that are needed to effectively
manage requirements databases. It also
discusses lessons learned on how to
effectively design and maintain require-
ments databases.

Development Environment
To demonstrate how metrics can pro-
vide the insight needed to get the re-
quirements right, data from a large
NASA project, Project X, will be used.
This anonymous project implements a
large system in three main incremental
builds.1 The development of these
builds is overlapping, design and cod-
ing of the second and third builds start-
ing before the completion of the first
build. Each build adds new functional-
ity to the previous build and satisfies a
further set of requirements.

NASA defines requirements in four
levels of detail. “Mission-Level Require-
ments” for the spacecraft and ground
system are System Level 1; they are the
highest level and rarely, if ever, change.
Level 1 requirements then undergo
decomposition to produce “Allocated
Requirements,” called Level 2; these
also are high level, and change should
be minimal. Level 2 requirements are
then divided into subsystems, and a
further level is derived in greater detail,
hence, “Level 3: Derived Require-
ments.” Generally, contracts are bid
using this level of requirements detail.
Each requirement in Level 2 traces
bidirectionally to one or more require-
ments in Level 3. “Detailed Require-
ments” are found in Level 4; these are
used to design and code the system.
There also is bidirectional tracing be-
tween Level 3 requirements and Level 4
requirements. To verify the require-
ments, two stages of testing are used.
System tests are designed to verify the
Level 4 requirements, then acceptance
tests are used to verify the Level 3 re-
quirements.

Doing Requirements Right the First Time
Theodore F. Hammer, Goddard Space Flight Center

Leonore L. Huffman and Linda H. Rosenberg, Unisys Federal Systems

The criticality of correct, complete, testable requirements is a fundamental tenet of software
engineering. The success of a project, both functionally and financially, is directly affected by
the quality of the requirements. Also critical is the complete requirements-based testing of the
final product. This article addresses three critical aspects of requirements: definition, verifica-
tion, and management. Project data collected from NASA Goddard Space Flight Center
(GSFC) by the Software Assurance Technology Center (SATC) will be used to demonstrate
these concepts and explain how any project, large or small, can apply this information.

CROSSTALK The Journal of Defense Software Engineering 21December 1998

Requirements Specification
The importance of correctly document-
ing requirements has caused the soft-
ware industry to produce a significant
number of aids [1] to create and man-
age requirements specification docu-
ments and individual specifications
statements; however, few of these aids
help evaluate the quality of the require-
ments document or the individual
specification statements. The SATC has
developed a tool to parse requirements
documents. The Automated Require-
ments Measurement (ARM) software
was developed to scan a file that con-
tains the text of the requirements speci-
fication. The software searches each line
of text for specific words and phrases
that are indicated by the SATC’s studies
to be an indicator of the document’s
requirements specification quality.
ARM has been applied to 56 NASA
requirements documents, and seven
measures have been developed.
• Lines of Text – Physical lines of text

as a measure of document size.
• Imperatives – Words and phrases

that command that something must
be done or provided, e.g., shall,
must, will, should, is required to,
are applicable, and responsible for.
The number of imperatives is used
as a base requirements count.

• Continuances – Phrases that follow
an imperative and introduce the
requirements specification at a lower
level for a supplemental requirements
count, e.g., as follows, following,
listed, in particular, and support.

• Directives – References provided to
figures, tables, or notes, e.g., figure,
table, for example, and note.

• Weak Phrases – Clauses that are apt
to cause uncertainty and leave room
for multiple interpretations or a
measure of ambiguity, e.g., ad-
equate, as applicable, as appropriate,
as a minimum, be able to, be ca-
pable, easy, effective, not limited to,
and if practical.

• Incomplete – Statements within the
document that have “TBD” (to be
determined) or “TBS” (to be sup-
plied).

• Options – Words that seem to give
the developer latitude to satisfy the

specifications but that can be am-
biguous, e.g., can, may, and option-
ally.
It must be emphasized that the tool

does not attempt to assess the correct-
ness of the requirements specified. It
assesses individual specification state-
ments and the vocabulary used to state
the requirements and also has the capa-
bility to assess the structure of the re-
quirements document.2

To see how this tool would be used
to assess the quality of a requirements
document, the Project X Level 3 re-
quirements document was analyzed
using the ARM tool. Table 1 shows the
results in contrast to statistics from the
56 previous documents.

From this analysis, several things
become clear. First, the document
shows some strengths: There appear to
be a good number of imperatives, and
the number of weak phrases is low
compared to the family of NASA docu-
ments processed through the ARM tool
to date; however, the document shows
some significant weaknesses. The docu-
ment has a large amount of text given
the number of imperatives. This indica-
tes a wordy document, which can ob-
scure the requirements and prevent
them from being clear and concise. The
document also has a large number of
incomplete requirements that contain
TBDs and TBSs—on this point alone,
the document can be judged not ready
for use. Also, this document has a large
number of options, which increases the
uncertainty about what is required of
the system to be developed. Options

leave decisions about the system to the
implementers, many times without
sufficient direction or instruction about
option selection criteria. As a result, the
implementation varies widely, from
some of the options to none.

Engineers have always wanted to get
the requirements right in the specifica-
tion, but there has been little available in
terms of analysis tools to allow them to
visualize the quality of the documenta-
tion. Now, with the ARM tool, the qual-
ity aspects of the documentation can be
visualized, and necessary action can be
taken to improve the documentation.

Requirements Volatility
Requirements testing is vital to getting
the requirements right. Many times it is
overlooked in favor of testing code, but
if the software does not conform to the
requirements, it is just as defective as if
it were full of bugs. Good requirements
testing relies on a good verification
program, which in turn must rest on an
analysis of requirements volatility and
linkage. An effective verification pro-
gram comprises a test profile made after
linkage of requirements is analyzed and
after considering requirements volatil-
ity. Again, data from Project X will
demonstrate the utility of metrics in
requirements verification.

Requirements stability impacts the
verification effort because testing can-
not be planned or designed when the
requirements are continually in a state
of flux. Figure 1 shows how metrics
provide insight into requirements sta-
bility while also demonstrating the

Table 1. Requirements specification analysis example.

muminiM 341 52 51 0 0 0 0

naideM 562,2 283 381 12 73 7 72

egarevA 4, 277 286 324 94 07 52 36

mumixaM 82 , 954 3, 698 811 422 4 23 031

dradnatS
noitaiveD

957 651 99 21 12 02 93

XtcejorP 43 , 466 1, 671 417 378 31 084 781

Lin
es

 of
 Te

xt

Im
pe

ra
tiv

es

Co
nt

in
ua

nc
es

Di
re

cti
ve

s

W
ea

k
Ph

ra
se

s

In
co

m
pl

ete

Op
tio

ns

56
 N

AS
A

Do
cu

m
en

ts

Doing Requirements Right the First Time

22 CROSSTALK The Journal of Defense Software Engineering December 1998

importance of examining an issue from more than one angle.
According to the graph on the left side of the figure, the total
number of requirements has stabilized in time for the Critical
Design Review (CDR); however, the graph on the right
shows that the requirements are not stable—modifications
and deletions are still taking place. This almost constant
change in the requirements will endanger the verification
program.

Requirements stability can also be viewed in terms of the
completeness of requirements traceability. Requirements
traceability is the linkage of the requirements at one level to
the requirements at the next lower level. Missing linkage may
indicate missing requirements. Figure 2 shows the linkage of
Level 3 requirements to Level 4 requirements. In all cases,
there is missing linkage (white bar of graph) between Level 3
and Level 4 requirements, indicating that the Level 4 require-
ments may be incomplete for a CDR held for any one of
these builds.

Requirements Verification
The objective of an effective verification program is to ensure
that every requirement is tested, the implication being that if
the system passes the test, the requirement’s functionality is
included in the delivered system [1, 2]. The traceability of
the requirements to test cases therefore needs to be assessed.
It is expected that a requirement will be linked to a test case

and may well be linked to more than one test case, as shown
in Figure 3 [3, 4].

The important aspect of this analysis is to determine
which requirements have not been linked to any test cases.

Figure 4 shows the traceability of requirements to test
cases for Project X around the CDR time frame for Build 2.
The profiles show several problems. First, the poor traceabil-
ity between the requirements and test cases for Build 1 indi-
cates that the requirements management tool was not used
effectively early in the project lifecycle. Second, there seems
to be a mix-up in the test priorities by the implementer. The

Figure 1. Requirements stabilization—volatility. Combination of both views indicates risk area: Requirements are not yet stable.

Figure 2. Requirements traceability.

Figure 3. Requirements verification – trace to test linkage.

test program for Build 3 is farther along than that for Build
2, even though Build 2 will be developed and tested before
Build 3. Resources may have been inappropriately allocated
to the development of the test program for Build 2. Last, the
test program for the Level 4 requirements is behind that for
the test program for the Level 3 requirements. Again, this is
backward. The first tests to be executed should be those for
the Level 4 requirements—the system tests—and after that,
tests for the Level 3 requirements—the acceptance tests—
should be executed.

Requirements Test Cases
Not only is it important to understand whether all the re-
quirements are linked to test cases, the character of the test
program also needs to be understood. This can be done by
looking at the profile and relationship of requirements to test
cases. Figure 5 shows an expected profile of unique require-
ments per test case based on data from NASA projects [5].

This profile shows the expectation that there will be a
large number of requirements tested by only one test case and
that there will be some requirements that will be tested by

Requirements Management

CROSSTALK The Journal of Defense Software Engineering 23December 1998

Figure 4. Requirements verification trace to test.

Figure 5. Test program characterization tests per requirement. Some
requirements will be tested only once or can be group tested. Complex
requirements need multiple tests.

Figure 6. Test program characterization tests per requirement.

multiple test cases. It is expected that the upper bound of
multiple test cases will range in the double-digits because
more complicated requirements may require different test
cases to thoroughly verify all aspects of the requirements.
However, there is a logistical limit on the number of test

cases that can be performed; as the number of test cases in-
creases, the difficulty in verifying the requirements increases
due to the complication in data analysis, understanding the
results of the multiple tests cases, and understanding the
impact of multiple test case results on the verification of the
requirements. Figure 6 shows the requirements-to-test-case
profile for Project X. There is a good indication that a large

number of requirements are covered by just one test, which
makes for a simple, easy-to-evaluate test program for a sig-
nificant part of the system requirements. However, in several
instances for both Build 2 and Build 3, there are several tests
for unique requirements. Notice that for Build 2, one re-
quirement has been linked to 25 test cases, and in Build 3,
that same requirement is linked to 51 test cases. This large
number of test cases may well make it impossible to verify
that these requirements have been implemented.

Requirements Management Tools
The use of tools to aid in requirements management has be-
come an important aspect of system engineering and design
because of the size and complexity of development efforts. The
tools that requirements managers use for automating the re-
quirements engineering process have reduced the drudgery in
maintaining a project’s requirements set and added the benefit
of significant error reduction. Tools also provide capabilities far
beyond those obtained from text-based maintenance and pro-
cessing of requirements. Requirements management tools are
sophisticated and complex—the nature of the material for
which they are responsible is finely detailed, time-sensitive,
highly internally dependent, and can be continuously chang-
ing. Tools that simplify complex tasks require skill and a thor-
ough understanding of their capabilities if they are to perform
effectively over the lifetime of a project [6].

Doing Requirements Right the First Time

24 CROSSTALK The Journal of Defense Software Engineering December 1998

Table 2. Requirement repository metric capabilities.

droW
rossecorP teehsdaerpS

lanoitaleR
esabataD

tnemeriuqeR
looT

eziStnemucoD X

segnahCcimanyD
emiTrevO X

eziSesaeleR X X X X

tnemeriuqeR
eliforPnoisnapxE X X

sepyTtnemeriuqeR X X X X

tnemeriuqeR
noitacifireV X X

ytilitaloVtnemeriuqeR X X X X

egarevoCtseT X X

napStseT X X

sepyTtseT X X X X

There are many requirements management tools from
which to choose. These range from simple word processors to
spreadsheets to relational databases to tools designed specifi-
cally for the management of requirements, such as DOORS
(Quality Systems & Software, Mount Arlington, N.J.) or
RTM: Requirements Traceability Management (Integrated
Chipware, Inc., Reston, Va.). The key to selecting the appro-
priate tool is the functionality provided and the capability to
develop metrics from the data.

The metric capability of the tool is important. It should be
noted that most of the metrics presented in this article were
developed from the data contained in a requirements manage-
ment tool. Table 2 shows a comparison of the metric capability
associated with the various tools. Clearly, the relational data-
base and requirements management tool provide the capabili-
ties needed to effectively support requirements management.

Tool selection is only part of the equation. A thorough
understanding of the tool’s capabilities and the management
processes that will use the tool also is necessary. The tool
should not be plugged into the management processes with
no thought to the impact on the tool’s capabilities. Adjust-
ments may be needed in the management processes and em-
ployment of the tool to bring about an efficient requirements
management process. Briefly, Project X had the following
problems with the requirements management tool.

Project X’s focus on establishing a requirements manage-
ment process was influenced by project organization. The
way the project chose to use the tool appeared reasonable
on the surface but was fraught with flaws stemming from
inexperience, and ultimately it worked against clear man-
agement. Specifically, many classes (tables or relations)
mirrored organizational structure instead of a single class
existing for each development phase. With a multiple test
class and requirements class approach, there was a natural
tendency for the organizations to “improve” the data
schema definitions assigned to them. The result was losses
in data integrity and restricted access to important informa-
tion about the requirements. Some information that should
have been available to all project organizations became
specific to a particular organization [6].

Because multiple classes were implemented at the test-by-
build level, fields were duplicated to each of the test classes;
common information then became self-contained within
each class. However, confusion developed between the test
organizations as to which one was responsible for populating
common data, all of which lead to inconsistent data entries
and prevented effective data mining [7]. Also, due to the
multiple-class approach, links that traced requirements to
tests also became extensive and conflicting. Because the
project decided to organize the database schema along the
lines of the organization, it was necessary to provide the
traceability of requirements to requirements and test case to
requirements by connections between many classes. This
resulted in a complex, undocumentable traceability relation-
ship between the system test cases and the two levels of re-
quirements. Most requirements tools are designed to use

minimal classes and effect decomposition within a class, not
between classes [6].

Conclusion
To do requirements right the first time, the following compo-
nents must be present: quality documentation, a complete
and appropriately structured verification program, and effec-
tive requirements management. Quality documentation is
complete, clear, and concise—concepts that used to be con-
sidered ethereal and difficult to measure or visualize. Now,
with the advent of tools like ARM, metrics can be developed
to show the strengths and weaknesses of the requirements
documentation. The completeness of the verification pro-
gram used to be the only aspect that was easily understood.
Now, through the use of metrics, project workers not only
can gain insight into the completeness of the test program
but also can understand the overall characteristics of the
verification program. Effective requirements management
now demands the appropriate use of management tools or
databases or both through the development lifecycle.
Through their use, the development of metrics to gain in-
sight into the nature of the requirements is enabled. Metrics
provide a powerful tool to gain insight into each of these
areas and give the project the ability to get the requirements
right the first time. It is no longer a dream but a reality. ◆

About the Authors
Theodore F. Hammer is the NASA manager for the SATC at
NASA’s GSFC. He is responsible for managing software quality
assurance activities for selected spacecraft implementation
projects. Prior to this position, he was a member of the Assur-

Requirements Management

CROSSTALK The Journal of Defense Software Engineering 25December 1998

ance Management Office, where he was
responsible for managing the overall
quality assurance activities for specific
ground system implementation projects,
with special emphasis on software quality
assurance. He has more than 22 years
experience in software development and
assurance. He joined NASA GSFC in
1989, where he supported NASA Head-
quarters Software Management Assurance
Program and participated in the review of
the early versions of the military software
development standard, MIL-STD-498, as
well as NASA software development and
assurance standards and guidebooks. He
has a bachelor’s degree in electrical engi-
neering from the University of Maryland
and is a member of the American Society
for Quality.

Goddard Space Flight Center
Code 302
Greenbelt, MD 20771
Voice: 301-286-7475
Fax: 301-286-1701
E-mail: thammer@pop300.gsfc.nasa.gov

Lenore L. Huffman is a principal engi-
neer with SATC. She has more than 14
years software engineering and quality
assurance experience. She is expert in the
design, implementation, and execution of
data collection, database structures, and
metrics reporting and analysis. She also is
expert in the design and use of state-of-
the-art database reporting systems. She
has extensive experience automating
configuration management and problem
reporting systems and adapting their
capabilities to satisfy unique project
requirements. She has successfully
planned, designed, and implemented
software quality assurance projects. Prior
to joining the SATC, she developed met-

rics for software at the Space Telescope
Institute, and while working at a chemi-
cal research center, was awarded several
U.S. patents. She has a master’s degree in
business administration.

Goddard Space Flight Center
Code 300.1, Building 6
Greenbelt, MD 20771
Voice: 301-286-0099
E-mail: Lenore.L.Huffman.1@gsfc.nasa.gov

Linda H. Rosenberg is an engineering
section head at Unisys Government Sys-
tems in Lanham, Md. She is contracted
to manage the SATC through the System
Reliability and Safety Office in the Flight
Assurance Division at NASA GSFC. She
is responsible for risk management train-
ing at all NASA centers, and the initia-
tion of software risk management at
NASA GSFC. As part of the SATC out-
reach program, she has presented metrics
and quality assurance papers and tutorials
at GSFC, the Institute of Electrical and
Electronic Engineers (IEEE), and the
Association for Computing Machinery
(ACM) local and international confer-
ences. She also reviews for ACM, IEEE,
and military conferences and journals.
She holds a doctorate in computer sci-
ence from the University of Maryland, a
Master’s of Engineering Science in com-
puter science from Loyola College, and a
bachelor’s degree in mathematics from
Towson State University. She is a member
of IEEE, the IEEE Computer Society,
ACM, and Upsilon Pi Epsilon.

Goddard Space Flight Center
Code 300.1, Building 6
Greenbelt, MD 20771
Voice: 301-286-0087
E-mail: Linda.H.Rosenberg.1@gsfc.nasa.gov

References
1. Brooks Jr., Frederick P., “No Silver

Bullet: Essence and Accidents of Soft-
ware Engineering,” IEEE Computer,
Vol. 15, No. 1, April 1987, pp. 10-18.

2. Hammer, T., L. Huffman, L.
Rosenberg, W. Wilson, L. Hyatt, “Re-
quirements Metrics for Risk Identifica-
tion,” Software Engineering Laboratory
Workshop, Goddard Space Flight Cen-
ter, December 1996.

3. NASA, Software Assurance Guidebook,
NASA Goddard Space Flight Center
Office of Safety, Reliability, Maintain-
ability, and Quality Assurance, Septem-
ber 1989.

4. Wilson, W., L. Rosenberg, and L.
Hyatt, “Automated Analysis of Require-
ments Specifications,” Fourteenth
Annual Pacific Northwest Software
Quality Conference, October 1996.

5. Hammer, T., “Measuring Requirements
Testing,” Eighteenth International
Conference on Software Engineering,
May 1997.

6. Hammer, T., “Automated Requirements
Management – Beware How You Use
Tools,” Nineteenth International Con-
ference on Software Engineering, April
1998.

7. Chen, M., J. Han, and P. Yu, “Data
Mining: An Overview from a Database
Perspective,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 8,
No. 6, December 1996.

Notes
1. Various names are used—deliveries,

releases, builds—but the term build is
used in this article.

2. This tool is available at no cost from the
SATC Web site http://satc.gsfc.nasa.gov.

Doing Requirements Right the First Time

